Computational Studies of Photobiological Keto-Enol Reactions and Chromophores
نویسنده
چکیده
This thesis presents computational chemistry studies of keto-enol reactions and chromophores of photobiological significance. The first part of the thesis is concerned with two protein-bound chromophores that, depending on the chemical conditions, can exist in a number of different ketonic and enolic forms. The first chromophore is astaxanthin, which occurs in the protein complex responsible for the deep-blue color of lobster carapace. By investigating how different forms of astaxanthin absorb UV-vis radiation of different wavelengths, a model is presented that explains the origin of the dramatic color change from deep-blue to red upon cooking of live lobsters. The second chromophore is the oxyluciferin light emitter of fireflies, which is formed in the catalytic center of the enzyme firefly luciferase. To date, there is no consensus regarding which of the possible ketonic and enolic forms is the key contributor to the light emission. In the thesis, the intrinsic tendency of oxyluciferin to prefer one particular form over other possible forms is established through calculation of keto-enol and acid-base excited-state equilibrium constants in aqueous solution. The second part of the thesis is concerned with two families of biological photoreceptors: the blue-light-absorbing LOV-domain proteins and the red-lightabsorbing phytochromes. Based on the ambient light environment, these proteins regulate physiological and developmental processes by switching between inactive and active conformations. In both families, the conversion of the inactive into the active conformation is triggered by a chemical reaction of the respective chromophore. The LOV-domain proteins bind a flavin chromophore and regulate processes such as chloroplast relocation and phototropism in plants. An important step in the activation of these photoreceptors is a singlet-triplet transition between two electronically excited states of the flavin chromophore. In the thesis, this transition is used as a prototype example for illustrating, for the first time, the ability of first-principles methods to calculate rate constants of inter-excited state phosphorescence events. Phytochromes, in turn, bind bilin chromophores and are active in the regulation of processes like seed germination and flowering time in plants. Following two systematic studies identifying the best way to model the UV-vis absorption
منابع مشابه
Computational Investigation on Alcohol Nano Sensors in Combination with Carbon Nanotube; A Monte Carlo and Ab Initio Simulation
Single walled nanotubes (SWNT) are common interested nanovehicle to make biosensors more sensitive.Carbon nanotubes (CNTs) have many distinct properties make them to be exploited to develop the nextgeneration of such nano sensors .The Keto-Enol tautomerization is one of the most common investigatedsubjects of isomerism in this regards, sensors are devices that are able to detect and change the ...
متن کاملComputational study of the intramolecular proton transfer between 6-hydroxypicolinic acid tautomeric forms and intermolecular hydrogen bonding in their dimers
This paper is a density functional theory (DFT) calculation of intramolecular proton transfer (IPT) in 6-hydroxypicolinic acid (6HPA, 6-hydroxypyridine-2-carboxylic acid) tautomeric forms. The transition state for the enol-to-keto transition is reported in the gas phase and in four different solvents. The planar and non-planar dimer forms of 6HPA keto and enol, respectively, were also studied i...
متن کاملThermodynamic Study and Total Energy Calculation for three systems of Enol↔Keto Tautomerism
Using Hartree–Fock (HF) and ِِDensity Functional Theory (DFT) calculations the thermodynamic properties such as thermal energy , , thermal enthalpy , , thermal entropy , , thermal Gibbs free energy , , heat capacity ,Cv, and molecular structures of several species involving in keto↔enol tautomerism related to acetaldehyde (A), 5,5-dimethyl-1,3-cyclohexanedione (dimedone) and acetylacetone (AA) h...
متن کاملBroadband ultrafast photoprotection by oxybenzone across the UVB and UVC spectral regions.
Recent studies have shed light on the energy dissipation mechanism of oxybenzone, a common ingredient in commercial sunscreens. After UVA photoexcitation, the dissipation mechanism may be understood in terms of an initial ultrafast excited state enol → keto tautomerisation, followed by nonadiabatic transfer to the ground electronic state and subsequent collisional relaxation to the starting eno...
متن کاملChange of the tautomeric preference for radical cation of pyruvic acid. DFT studies in the gas phase
Keto-enol tautomerism was investigated for ionized pyruvic acid using the DFT(B3LYP) method and the larger basis sets [6-31++G(d,p), 6-311++G(3df, 3pd) and aug-cc-pVDZ]. Change of the tautomeric preference was observed when going from the neutral to ionized tautomeric mixture. Ionization favors the enolization process (ketoenol) of pyruvic acid, whereas the ketonization (ketoenol) is preferred ...
متن کامل